162 research outputs found

    Ultrahigh areal number density solid-state on-chip microsupercapacitors via electrohydrodynamic jet printing

    Get PDF
    Microsupercapacitors (MSCs) have garnered considerable attention as a promising power source for microelectronics and miniaturized portable/wearable devices. However, their practical application has been hindered by the manufacturing complexity and dimensional limits. Here, we develop a new class of ultrahigh areal number density solid-state MSCs (UHD SS-MSCs) on a chip via electrohydrodynamic (EHD) jet printing. This is, to the best of our knowledge, the first study to exploit EHD jet printing in the MSCs. The activated carbon-based electrode inks are EHD jet-printed, creating interdigitated electrodes with fine feature sizes. Subsequently, a drying-free, ultraviolet-cured solid-state gel electrolyte is introduced to ensure electrochemical isolation between the SS-MSCs, enabling dense SS-MSC integration with on-demand (in-series/in-parallel) cell connection on a chip. The resulting on-chip UHD SS-MSCs exhibit exceptional areal number density [36 unit cells integrated on a chip (area = 8.0 mm x 8.2 mm), 54.9 cells cm(-2)] and areal operating voltage (65.9 V cm(-2))

    Investigation of mechanisms for enhancing expression of human FVIII in vitro; application to therapeutic protein production

    Get PDF
    Haemophilia A is the most common bleeding disorder and is caused by deficiency or abnormality in coagulation Factor VIII (FVIII). Deletion of the B-domain dramatically improves secretion of this protein with no alteration of the pro-coagulant activity of the B-domainless FVIII. Previous work has shown that the codon optimisation of FVIII increases expression by 10-fold and the novel variant, FVIII-V3, is expressed at higher levels than B-domain deleted FVIII (BDD-FVIII) in the context of AAV mediated gene transfer in mice. However, the mechanisms underlying these enhancements to expression remain undefined. The purpose of this study was to investigate if (1) codon optimisation increases FVIII expression by increasing transcription of FVIII mRNA, (2) higher level of FVIII expression observed with V3 is due to N-linked glycosylation motifs in the B-domain linker and V3. In this thesis, I characterised a range of novel FVIII variants to demonstrate that functional characteristics were similar to native FVIII. Firstly, comparison of FVIII expression levels in lentivirally transduced HEK-293 stable cell lines showed codon optimised FVIII variants expressed higher than wild type FVIII not only improved mRNA transcription but also FVIII expression. The V3co variant expressed FVIII at the highest level in-vitro and by in-vivo AAV gene delivery to mice. Secondly, the glycosylation profile of purified FVIII variant proteins was described. We show incremental formation of N-glycans within the B-domain linker sequences as detected by mass spectrometry analysis. In addition, these novel FVIII variants showed thrombin digestion patterns, identical to the commercial rFVIII protein. Furthermore, the thrombin generation and vWF/FVIII affinity assay revealed that all variants were similar to commercially available B-DD rFVIII. Finally, the expression of N-linked glycosylation mutant V5 and through a deletion analysis, short regions from the V3 linker variants using in-vivo AAV gene transfer confirming glycosylation of the linker sequence is not an important factor but conformation changes may be the key for the improved expresssion profile. Overall, these insights will significantly increase the potential for the transition of engineered FVIII molecules to clinic

    Designing Intra-Hand Input for Wearable Devices

    Get PDF
    Department of Biomedical Engineering (Human Factors Engineering)Current trends toward the miniaturization of digital technology have enabled the development of versatile smart wearable devices. Powered by capable processors and equipped with advanced sensors, this novel device category can substantially impact application areas as diverse as education, health care, and entertainment. However, despite their increasing sophistication and potential, input techniques for wearable devices are still relatively immature and often fail to reflect key practical constraints in this design space. For example, on-device touch surfaces, such as the temple touchpad of Google Glass, are typically small and out-of-sight, thus limiting their expressivity capability. Furthermore, input techniques designed specifically for Head-Mounted Displays (HMDs), such as free-hand (e.g., Microsoft Hololens) or dedicated controller (e.g., Oculus VR) tracking, exhibit low levels of social acceptability (e.g., large-scale hand gestures are arguably unsuited for use in public settings) and are vulnerable to cause fatigue (e.g., gorilla arm) in long-term use. Such factors limit their real-world applicability. In addition to these difficulties, typical wearable use scenarios feature various situational impairments, such as encumbered use (e.g., having one hand busy), mobile use (e.g., while walking), and eyes-free use (e.g., while responding to real-world stimuli). These considerations are weakly catered for by the design of current wearable input systems. This dissertation seeks to address these problems by exploring the design space of intra-hand input, which refers to small-scale actions made within a single hand. In particular, through a hand-mounted sensing system, intra-hand input can include diverse input surfaces, such as between fingers (e.g., fingers-to-thumb and thumb-to-fingers inputs) to body surfaces (e.g., hand-to-face inputs). Here, I identify several advantages of this form of hand input, as follows. First, the hand???s high dexterity can enable comfortable, quick, accurate, and expressive inputs of various types (e.g., tap, flick, or swipe touches) at multiple locations (e.g., on each of the five fingers or other body surfaces). In addition, many viable forms of these input movements are small-scale, promising low fatigue over long-term use and basic actions that are discrete and socially acceptable. Finally, intra-hand input is inherently robust to many common situational impairments, such as use that take place in eyes-free, public, or mobile settings. Consolidating these prospective advantages, the general claim of this dissertation is that intra-hand input is an expressive and effective modality for interaction with wearable devices such as HMDs. The dissertation seeks to demonstrate that this claim holds in a range of wearable scenarios and applications, and with measures of both objective performance (e.g., time, errors, accuracy) and subjective experience (e.g., comfort or social acceptability). Specifically, in this dissertation, I verify the referred general claim by demonstrating it in three separate scenarios. I begin by exploring the design space of intra-hand input by studying the specific case of touches to a set of five touch-sensitive five nails. To this end, I first conduct an exploratory design process in which a large set of 144 input actions are generated, followed by two empirical studies on comfort and performance that refine such a large set to 29 viable inputs. The results of this work indicate that nail touches are an accessible, expressive, and comfortable form of input. Based on these results, in the second scenario, I focused on text entry in a mobile setting with the same nail form-factor system. Through a comparative empirical study involving both sitting and mobile conditions, nail-based touches were confirmed to be robust to physical disturbance while mobile. A follow-up word repetition study indicated that text entry studies of up to 33.1 WPM could be achieved when key layouts were appropriately optimized for the nail form factor. These results reveal that intra-hand inputs are suitable for complex input tasks in mobile contexts. In the third scenario, I explored an alternative form of intra-hand input that relies on small-scale hand touches to the face via the lens of social acceptability. This scenario is especially valuable for multi-wearables usage contexts, as single hand-mounted systems can enable input from a proximate distance for each scattered device around the body (e.g., hand-to-face input for smartglass or ear-worn device and inter-finger input with wristwatch usage posture for smartwatch). In fact, making an input on the face can attract unwanted, undue attention from the public. Thus, the design stage of this work involved elicitation of diverse unobtrusive and socially acceptable hand-to-face actions from users, that is, outcomes that were then refined into five design strategies that can achieve socially acceptable input in this setting. Follow-up studies on a prototype that instantiates these strategies validate their effectiveness and provide a characterization of the speed and accuracy achieved by the user with each system. I argue that this spectrum of metrics, recorded over a diverse set of scenarios, supports the general claim that intra-hand inputs for wearable devices can be expressively and effectively operated in terms of objective performance (e.g., time, errors, accuracy) and subjective experience (e.g., comfort or social acceptability) in common wearable use scenarios, such as when mobile and in public. I conclude with a discussion of the contributions of this work, scope for further developments, and the design issues that need to be considered by researchers, designers, and developers who seek to implement these types of input. This discussion spans diverse considerations, such as suitable tracking technologies, appropriate body regions, viable input types, and effective design processes. Through this discussion, this dissertation seeks to provide practical guidance to support and accelerate further research efforts aimed at achieving real-world systems that realize the potential of intra-hand input for wearables.clos

    Robust Data Pruning under Label Noise via Maximizing Re-labeling Accuracy

    Full text link
    Data pruning, which aims to downsize a large training set into a small informative subset, is crucial for reducing the enormous computational costs of modern deep learning. Though large-scale data collections invariably contain annotation noise and numerous robust learning methods have been developed, data pruning for the noise-robust learning scenario has received little attention. With state-of-the-art Re-labeling methods that self-correct erroneous labels while training, it is challenging to identify which subset induces the most accurate re-labeling of erroneous labels in the entire training set. In this paper, we formalize the problem of data pruning with re-labeling. We first show that the likelihood of a training example being correctly re-labeled is proportional to the prediction confidence of its neighborhood in the subset. Therefore, we propose a novel data pruning algorithm, Prune4Rel, that finds a subset maximizing the total neighborhood confidence of all training examples, thereby maximizing the re-labeling accuracy and generalization performance. Extensive experiments on four real and one synthetic noisy datasets show that \algname{} outperforms the baselines with Re-labeling models by up to 9.1% as well as those with a standard model by up to 21.6%

    Alternative Tower Field Construction for Quantum Implementation of the AES S-box

    Get PDF
    Grover’s search algorithm allows a quantum adversary to find a k-bit secret key of a block cipher by making O(2k/2) block cipher queries. Resistance of a block cipher to such an attack is evaluated by quantum resources required to implement Grover’s oracle for the target cipher. The quantum resources are typically estimated by the T-depth of its circuit implementation (time) and the number of qubits used by the circuit (space). Since the AES S-box is the only component which requires T-gates in the quantum implementation of AES, recent research has put its focus on efficient implementation of the AES S-box. However, any efficient implementation with low T-depth will not be practical in the real world without considering qubit consumption of the implementation. In this work, we propose four methods of trade-off between time and space for the quantum implementation of the AES S-box. In particular,one of our methods turns out to use the smallest number of qubits among the existing methods, significantly reducing its T-depth

    Low-frequency noise in junctionless multigate transistors

    Get PDF
    Low-frequency noise in n-type junctionless multigate transistors was investigated. It can be well understood with the carrier number fluctuations whereas the conduction is mainly limited by the bulk expecting Hooge mobility fluctuations. The trapping/release of charge carriers is related not only to the oxide-semiconductor interface but also to the depleted channel. The volume trap density is in the range of 6-30 x 10(16) cm(-3) eV(-1), which is similar to Si-SiO2 bulk transistors and remarkably lower than in high-k transistors. These results show that the noise in nanowire devices might be affected by additional trapping centers. (C) 2011 American Institute of Physics. (doi:10.1063/1.3569724

    Isolation and characterization of a new mucoid-free Klebsiella pneumoniae strain for 2,3-butanediol production

    Get PDF
    The secretion of mucoid substances by Klebsiella pneumoniae, a natural 2,3-butanediol (2,3-BD) hyper-producer, hinders its application in large-scale fermentation because of pathogenicity, fermentation instability, and downstream difficulty. In this study, 14 K. pneumoniae strains were isolated from a waste water treatment plant and their 2,3-BD production efficiencies were assessed with the strain K. pneumoniae DSM2026. Among various strains isolated, K. pneumoniae GSC010 and GSC112 produced relatively large amounts of 2,3-BD compared to other isolates; and their 2,3-BD production was consistent with DSM2026. Meanwhile, mucoidic characteristics of GSC010 were more or less similar to DSM2026, which was observed by scanning electron microscope (SEM) as a characteristic intercalated thread anchored on the surface of the cells. However, no polysaccharide materials were found in a non-mucoid cell, GSC112. Fed-batch culture of GSC112 with continuous glucose feeding resulted in the production of 2,3-BD at 52.4 g/l with 2,3-BD yield and overall productivity of 0.27 g/g glucose and 0.52 g/l/h, respectively. These results strongly suggest that the newly isolated mucoid-free K. pneumoniae GSC112 has potential for industrial production of 2,3-BD.Keywords: 2,3-Butanediol, Klebsiella pneumoniae, isolation, capsular polysaccharides, scanning electron microscop

    How Well Do Large Language Models Truly Ground?

    Full text link
    Reliance on the inherent knowledge of Large Language Models (LLMs) can cause issues such as hallucinations, lack of control, and difficulties in integrating variable knowledge. To mitigate this, LLMs can be probed to generate responses by grounding on external context, often given as input (knowledge-augmented models). Yet, previous research is often confined to a narrow view of the term "grounding", often only focusing on whether the response contains the correct answer or not, which does not ensure the reliability of the entire response. To address this limitation, we introduce a strict definition of grounding: a model is considered truly grounded when its responses (1) fully utilize necessary knowledge from the provided context, and (2) don't exceed the knowledge within the contexts. We introduce a new dataset and a grounding metric to assess this new definition and perform experiments across 13 LLMs of different sizes and training methods to provide insights into the factors that influence grounding performance. Our findings contribute to a better understanding of how to improve grounding capabilities and suggest an area of improvement toward more reliable and controllable LLM applications
    corecore